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Fine Bubble Aeration. Mathematical Modeling of 
Time-Dependent Operation 

DAVID J. WILSON 
DEPARTMENT OF CHEMISTRY 
VANDERBILT UNIVERSITY 
NASHVILLE. TENNESSEE 31235 

Abstract 

The operation of fine bubble aeration columns in the time-dependent mode is 
modeled. The kinetics of mass transfer between the solution and the rising 
bubbles is included by means of a time-constant approach. The magnitude of Ar 
is limited by the requirement that u,,,.Ac/Ax be less than 1 (u, is the linear 
velocity of the aqueous phase); the magnitudes of the mass transfer time constant 
and the rise velocity of the bubbles do not affect the maximum value of Az which 
can be used. The time constant for mass transfer is the reciprocal of the least 
positive eigenvalue of a suitably chosen diffusion problem. The effects of influent 
flow rate, number of compartments into which the column is partitioned, bubble 
boundary layer thickness, and Henry’s constant for the volatile solute are 
examined. Transient effects associated with startup and with concentration pulses 
in the influent are studied. 

INTRODUCTION 

Removal of volatile materials from water by fine bubble aeration has 
been treated in a number of standard references (1-3, for example); these 
steady-state models are very useful for the engineer designing an aeration 
facility for the treatment of influent streams having relatively constant 
flow rates and compositions. In the treatment of wastewaters, however, 
one is typically confronted with influent streams which are highly 
variable in both flow rate and composition. One then has the choice of 1) 
overdesigning the aeration column to handle the largest transient load on 
the assumption that this is a steady-state loading, 2) installing an 
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2212 WILSON 

equalization tank to smooth out the loading to a set of values which make 
use of a steady-state model a reasonable approximation, or 3 )  utilizing a 
time-dependent model, together with information about the time de- 
pendences of the influent flow rate and concentration. This last method 
permits one to make use of the ability of the aeration column itself to 
buffer transient overloadings, and should permit some economies in the 
design of the facility. 

Here we present a model of fine bubble aeration which allows one to 
examine the effect of time-dependent loading and which is suitable for 
use on commonly available microcomputers, such as the IBM PC and its 
compatibles. We first develop an equilibrium model for one-stage 
aeration, by way of introduction. This is then modified to take account of 
mass transport kinetics by means of a time constant approach. This, in 
turn, is then elaborated into a multistage model suitable for use with tall, 
baffled columns. The magnitude of the time constant for mass transport 
between the solution and the rising bubbles is then estimated. Lastly, we 
examine the results of the theory, illustrating how these depend on the 
values of the parameters used to describe the column and its operation. 

EQUILIBRIUM MODEL, SINGLE-STAGE BUBBLE AERATION 

The system being analyzed is pictured in Fig. 1. Let 

m(t) = mass of solute at time c in the solution being treated, g 
V, = volume of solution being treated, mL 
u, = air flow rate, mL/s, at 1 atm and ambient temperature 
c,  = solute concentration in the solution, g/mL 
c, = solute concentration in the vapor phase in equilibrium with the 

KH = Henry's constant for the solute, defined by c, = KHc, 
solution, gm/mL 

A convenient formula for estimating Henry's constants is 

1.603 X (MW) * P " ( T )  
T . C, 

KH = 

where (MW) = solute molecular weight, g/mol 
Po(T) = solute vapor pressure at temperature T,  O K ,  torr 
c , ~  = solute solubility in water at temperature T, g/100 mL 

Solubilities and vapor pressures depend markedly on temperature. If 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
8
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



FINE BUBBLE AERATION 2213 
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Air I 
Single-stage Aerator 

FIG. 1. Single-stage fine bubble aeration column. 

data at the desired temperature are not available, a plot of c,(T) versus T 
or of log,, c,(T) versus l /T may be used to obtain c, at the desired 
temperature. Vapor pressures are best estimated by a plot of log,, Po(T) 
versus 1/T, which is nearly linear. 

The solute concentration and mass in the one-stage aerator under 
consideration are related by 

clVl = m (2) 

The amount of solute lost during a time interval dt is given by 

-dm = v,c,dt 

= v,K,cldt 

Substitution from Eq. (2) then yields 

(3)  

from which 
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m ( t )  = m0 exp (--KHu,t/V,) 

WILSON 

( 5 )  

or 

For a continuous flow apparatus operating in steady-state conditions, 
mass balance yields 

where 0,"" = influent (and effluent) flow rate 
C,,n = influent solute concentration 
c,m = effluent solute concentration 

Equation (7) and Henry's law yield an expression for the effluent 
concentration, 

If a continuous-flow aerator is not operating in steady state, mass 
balance yields 

The flow rates of air (u,) and water and the influent solute concentration 
may vary with time. V,(t), the volume of liquid in the aerator, is given 
by 

where oem = effluent flow rate. 

If uinn = uem = constant and u, and cinn are also held constant, the 
solution to Eq. (9) is given by 
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FINE BUBBLE AERATION 221 5 

We see that the time constant governing the approach of the aerator to a 
steady state is given by 

EFFECT OF MASS TRANSPORT KINETICS ON THE OPERATION 
OF A SINGLE-STATE FINE BUBBLE AERATOR 

Here we shall assume a first-order approach to equilibrium by a 
bubble rising through the aerator. The mass of solute p( t )  in a single 
bubble of radius a which is rising through the aerator is assumed to be 
determined by 

& 
dt 

where b - a = boundary layer thickness, cm 
c1 = solute concentration in the bulk liquid, g/mL 
k = mass transfer rate coefficient, cm2/s, to be calculated later 
c, = solute vapor concentration in the bubble 

Noting that 

4 
3 p = -na3c,(t) 

allows one to rewrite Eq. (13) as 

3kcl c, = dca + 3k 
dt ~ ( b  -u)KH a ( b  - a )  

The solution to this equation yields 

or 
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2216 WILSON 

If n bubbles per second are passing through the apparatus, then the 
mass of solute removed by aeration during a time interval dt is given 
by 

(17) -dm = n .~ 4na3 K,c , [  1 - exp ( - 3 k T ’  ) ] d f  
3 Q(b - U ) K H  

where t’ = transit time of a bubble through the liquid in the aerator. 

Now, 

the air flow rate, and c1 = m/V,, which yields 

This yields the same results as we obtained for the local equilibrium 
model if we replace KH by 

We next estimate the bubble transit time t’. The rise velocity of a bubble 
with respect to the surrounding fluid can be calculated over a range of 
Reynolds numbers from 0 to 104 from Eq. (21), modified from Fair, 
Geyer, and Okun (4). 

where g = gravitational constant, 980 cm/s2 
p = fluid density, g/cm’ 
r, = bubble radius, cm 
7-l = viscosity, P 

This equation is solved iteratively for the bubble rise velocity relative to 
the surrounding liquid, u. 

The bubble rise velocity with respect to the aeration column, uI, is then 
obtained as follows. The volume of air in the column is given by 
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where L is the height of the water column (cm). The volume of water in 
the column is 

V ,  = n(r,)’L - U , L / U ,  (23) 

where r, is the column radius (cm). The linear velocity downward of the 
water in the column is 

U W  u,  = 
nrf. - u, /u ,  

where u, is the volumetric flow rate of the water. Now 

u ,  = u - uw (25) 

gives the bubble velocity relative to the apparatus. Substituting this into 
Eq. (24) yields 

U W  u ,  = 
nrf - u, / (u - u,) 

which can be rearranged to give a quadratic in u,, the desired solution to 
which is 

u,  = [ ( u  - $) - { ( u  - sy - 3 ‘ * ] / 2  (27) 

The rise velocity of the bubble relative to the apparatus is obtained by 
substituting this result into Eq. (25). The contact time of a bubble with the 
aqueous phase is then given by 

This should be regarded as an upper bound, since the bubbles rising 
from the bottom of the column generally induce eddies and turbulence in 
the liquid which lead to rising currents in the column where the bubbles 
are most numerous. Because of this uncertainty, one is probably justified 
in approximating u,  by u in Eq. (28). 
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2218 WILSON 

MULTISTAGE MODEL FOR AERATION COLUMNS 

If the aeration column is long and axial dispersion is controlled by 
baffling, use of a multistage model may be warranted. The model is 
illustrated in Fig. 2. We shall carry out the calculation in two steps. First, 
the increase in solute mass of a single bubble as it moves across the ith 
compartment representing the column is calculated under the assump- 
tion that the solute concentration in the bulk liquid can be regarded as 
constant during this short time interval. Second, this result is used in 
constructing the differential equations describing the changes in bulk 
liquid solute concentrations in the compartments used to model the 
column. 

Let L = column length, cm 
r, = column radius, cm 
a = mean bubble radius, cm 
cinn = influent solute concentration, g/mL 
cf = solute concentration in the liquid phase in the ith compart- 

Cp = solute concentration in the vapor phase at the top of the ith 

N = number of compartments into which the column is partitioned 
U = L/N, the thickness of one compartment, cm 
KH = Henry's constant, dimensionless 
k = mass transfer rate coefficient, cm*/s 
u, = volumetric air flow rate, mL/s 
u, = volumetric water flow rate, mL/s 
u = bubble rise velocity relative to aqueous phase, cm/s 

ment, g/mL 

compartment, gm/mL 

Let us focus on a single bubble rising through the ith compartment. 
The mass of solute in the bubble is then determined by an equation 
similar to Eq. (15), 

(c: - CP/K") 
h - a  * = 4na2k dt 

This integrates to give 

The transit time of a bubble across the ith compartment is given by 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
8
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



FINE BUBBLE AERATION 2219 

Influent .c---- 

FIG. 2. Multistage aeration column. 

where u , ,  the rise velocity of a bubble relative to the lab, is given by Eqs. 
(25) and (27). An approximation which is good at low water and air flow 
rates is 

v w  u , = u - -  
nrf 

where u is calculated from Eq. (21). 
The initial value of p as the bubble crosses from the (i - 1)th to the ith 

compartment is defined as pi-,. The final value, as the bubble leaves the 
ith compartment, is taken as p,. 

+- 4nu3 K H c ; ,  i = 1 , 2 , .  . . , N  (33) 
3 
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2220 WILSON 

Po = 0 (34) 

The increase in solute carried by the bubble resulting from its movement 
across the ith compartment is then given by - u - ~ ;  this is the amount of 
solute in the ith compartment. The volume of liquid in the ith 
compartment is given by 

where u1 is calculated from Eqs. (25) and (27). Then 

gives the concentration in the ith compartment. A solute material balance 
on this compartment gives 

31J -- d m i  - uw(c~+I - c;) - A ( P ;  - pi-1) 
dt 4na3 (37) 

The first term on the right-hand side of Eq. (37) represents simple 
advection of the liquid. The second term represents the removal of solute 
from the ith compartment in the vapor phase. 

We then replace mi in Eq. (37) by means of Eq. (36), obtaining 

( p j -  p,-,), i = 2 ,3 ,  . . . ,  N -  1 dcf u, 3u - c;) - (1 dt V ,  47TU3Vl 
~ = 

The simulation of a run is done as follows. Initial concentrations are 
selected-such as cil = cinn or c,! = 0. The pj are then calculated recursively 
from Eqs. (33) and (34). These are then used in Eqs. (38)-(40) to calculate 
the dcfldt values. These are used to numerically integrate the differential 
equations to obtain the values of the cf at t = At. These values are in turn 
used to calculate the new values (at t = At) of the pi, and the process is 
repeated. A predictor-corrector method described by Ralston and Wilf (5) 
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FINE BUBBLE AERATION 2221 

provides an accurate, easily coded, and fast method for integrating Eqs. 
(38)-(40) forward in time. 

Relatively large values of the time increment At can be used in this 
model, since At is limited by neither the time constant associated with 
mass transfer into a bubble nor with the transit time of a bubble across 
one of the compartments representing the column. An upper bound of At 
is given by the requirement that At be less than ALh,, where u, is the 
linear velocity of the water in the column. This is a much more generous 
criterion than those which come from mass transfer rate or bubble transit 
time. 

Steady-state models are generally preferred over time-dependent 
representations because the former require less computation. The present 
model, however, runs to steady state in a couple of minutes or less under 
fairly typical conditions when a Zenith 150 microcomputer running 
compiled BASICA at 4.77 MHz is used. 

ESTIMATION OF THE MASS TRANSPORT TIME CONSTANT 

In this section we calculate an estimate of the time constant for 
diffusion of volatile solute from the bulk liquid through the boundary 
layer of liquid around the bubble into the bubble. Since gas-phase 
diffusion constants are very much larger than liquid-phase diffusion 
constants, we assume that complete mixing within the bubble itself is 
instantaneous on our time scale. We follow Huang et al. (6). 

The diffusion equation appropriate for a problem with spherical 
symmetry is 

where D = solute diffusion constant in water, cm’ls 

from the center of the bubble 
c = solute concentration in the solution at time t and distance r 

a = bubble radius 
b = radius of bubble plus its boundary layer 

Equation (41) is readily solved by separation of variables; a general 
solution is 
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Mass balance considerations yield 

where mb is the mass of solute in the bubble. Now 

from Henry’s law, so 

Equations (43) and (45) then give 

WILSON 

(43) 

This provides one of the problem’s boundary conditions. The other, at 
r = 6 ,  is simply 

c(b, t )  = c ,  (47) 

where c, is the bulk solute concentration. 
One then substitutes Eq. (42) into Eqs. (46) and (47) to get a pair of 

linear homogeneous equations for Ah and Bk; the existence of nonzero 
values for these requires that the determinant of the coefficients of this 
system vanish. The linear equations are 

and 
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Setting the determinant of this system to zero yields a remarkably simple 
result for the eigenvalue equation, 

It is evident from Eq. (50) that the h, are proportional to D, as expected. 
We take l/h, as the time constant for mass transfer, where h, is the lowest 
nonzero root of Eq. (50). The relationship between k, the mass transfer 
rate coefficient, and h, is obtained by setting the time constant in Eq. (16) 
equal to A,, which yields 

A, 
a(b - a ) K ,  

3 
k =  

RESULTS OF THE MODEL 

Aeration columns show a fairly sharply defined breakthrough on 
overload. This is seen in Fig. 3,  in which effluent concentrations are 
plotted versus time. The sharpness of the break increases with increasing 
number of compartments; in this figure runs are shown for columns 
represented by 5 and 25 compartments. (We note that these compart- 
ments are not equivalent to theoretical transfer units or theoretical plates; 
that model assumes local equilibrium.) The influent flow rates range 
from 0.25 to 4.0 mL/s. These effluent concentrations are all for steady- 
state conditions. 

When columns are not overloaded, the number of compartments has a 
very marked effect on column performance, as shown in Fig. 4. Here 
three sets of identical runs (with influent flow rates of 2.25, 2.0, and 1.75 
mL/s) are shown for columns represented by 1, 2, 3, 4, 5, 10, 20, and 25 
compartments. Obviously one is well-advised to reduce axial dispersion 
as much as possible in aeration columns if one is seeking maximum 
removal efficiencies. 
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Water f lowrate 

FIG. 3. Effect of water flow rate on effluent solute concentration. Column height = 100 cm; 
column radius = 5 cm; Henry’s constant = 0.2 (dimensionless); air flow rate = 10 mWs; 
bubble radius = 0.05 cm; bubble boundary layer thickness = 0.02 cm; influent concentra- 
tion = 1 g/L; density of aqueous phase = 1 g/mL viscosity of aqueous phase = 0.01 P; mass 
transfer rate constant k = 0.0002 cm2/s; dt = 10 s; bubble rise velocity = 12.85 cm/s; number 

of compartments in model (N) = 5 (upper curve), 25 (lower curve). 

0.6 gm/L r 

0 5 10 15 20 25 
N 

FIG. 4. Steady-state effluent concentrations versus number of compartments used in model. 
Influent flow rate = 1.75,2.0,2.25 mL/s: number of compartments in model (N) plotted on 

abscissa; other parameters as in Fig. 3. 
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Ceffl  

0.4 

0.2 

The time-dependent responses of an aeration column having influent 
flow rates of 2.5, 2.0, and 1.5 mL/s are shown in Figs. 5, 6, and 7, 
respectively. The other model parameters are given in the caption to Fig. 
5. In each case the lower curve gives the effluent concentration from a 
column initially charged with water, while the upper curve gives the 
effluent concentration from a column initially charged with influent. In 
both cases and at all three flow rates the column has approached steady- 
state operation in roughly lo4 s, or 2.8 h. It is apparent that the approach 
to steady-state conditions is rather sluggish. 

Figure 8 shows the responses of an aeration column to time-dependent 
influent concentrations. In the three runs plotted here the influent 
concentration, initially 1 g/L, is increased to 5 g/L at 5000 s and held at 
this value for 1000,2000, or 3000 s before being reduced back to 1 g/L. The 
slow response of the effluent concentration to these transient overloads 
and the prolonged tailing are both consistent with the slow approaches to 
steady-state conditions seen in Figs. 5-7. This model also readily handles 
transient variations in the influent flow rate. The ability of the model to 
deal with such time-dependent input makes it particularly suitable for 
exploring the behavior of systems which will be used in applications 
which may involve substantial transient variations, such as waste 

- \ 
- 

I 1 1 

0.6 = 2.5 mL/sec 

FIG. 5. Approach of effluent concentration to steady state after column start-up. Influent 
flow rate = 2.5 mWs; N = 5; other parameters as in Fig. 3. The lower curve corresponds to a 
column initially filled with clean water; the upper, to a column initially ,filled with 

influent. 
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1.0 gm/L F 
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= 2.0 mL/sec 

5 

I 

0 6 8 10 

FIG. 6. Approach of effluent concentration to steady state after column start-up. Influent 
flow rate = 2.0 mL/s; other parameters as in Fig. 5. 

I I 1 

0 6 8 10 

= 1.5mL/sec 

FIG. 7. Approach of effluent concentration to steady state after column start-up. Influent 
flow rate = 1.5 mL/s; other parameters as in Fig. 5. 
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1 I I 1 
0 5 ~ 1 0 ~ s e c  + 10 15 

FIG. 8. Effect of influent concentration pulses on column effluent concentration. Influent 
flow rate = 2.0 mL/s; N = 5; initial influent concentration = 1 &; influent concentration 
increases to 5 g/L at 5000 s and is held at this value for lo00 (bottom curve), 2000. and 3000 

(top curve) s, after which it returns to 1 g/L. Other parameters as in Fig. 3. 

treatment. The dependence of the mass transfer time constant Al on the 
Henry’s constant of the solute is illustrated in Fig. 9. It is apparent that, 
over the range of K ,  which one expects for the removal of volatile organic 
solvents from water, the mass transfer time constant does not vary by 
much. 

The effect of boundary layer thickness, b - a, on Al, shown in Fig. 10, is 
quite large. A, decreases rapidly with increasing boundary layer thickness, 
as one would expect. In these runs the bubble radius is held constant. If 
the bubble radius is vaned while the boundary layer thickness is held 
constant, A, varies as illustrated in Fig. 11. The values of hl decrease quite 
rapidly with increasing bubble radius, again as one would expect. 

It is generally believed that the boundary layer thickness around a 
sphere moving in a liquid is of the order of the radius of the sphere (7). 
We therefore made a set of runs in which the bubble radius and the 
boundary layer thickness were simultaneously varied, with the boundary 
layer thickness being set equal to the bubble radius. The results are 
displayed in Fig. 12, and show that hl decreases rapidly with increasing 
bubble and boundary layer thickness, as expected. Actually, on dimen- 
sional grounds one expects that for this set of runs h, should vary as the 
reciprocal of the square of the bubble radius, as is indeed the case. 
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0.4 

0.3 

X I  

0.2 

WILSON 

r sec-‘ 

- 

- 

- 

0 0.05 0.10 0.15 0.20 
K H  

FIG. 9. Dependence of mass transfer rate parameter hl on Henry’s constant. Bubble 
radius = 0.1; boundary layer thickness = 0.1 cm; solute diffusion constant = 0.001 cm2 * s. 

0 ,025 .050cm .075 ,100 ,125 
b - a  

FIG. 10. Dependence of mass transfer rate parameter h, on boundary layer thickness at 
constant bubble radius. Henry’s constant = 0.2 (dimensionless); other parameters as in 
Fig. 9. 
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0 0.05cm 0.10 0.15 0.20 
0 

FIG. 11.  Dependence of mass transfer rate parameter hl on bubble radius at constant 
boundary layer thickness. Boundary layer thickness = 0.1 cm; Henry’s constant = 0.2; other 

parameters as in Fig. 9. 

I I I I 

0 0.05 cm 0.10 0.15 0.2.c 
a 

FIG. 12. Dependence of mass transfer rate parameter h, on bubble radius, with boundary 
layer thickness equal to bubble radius. Henry’s constant = 0.2; other parameters as in 

Fig. 9. 
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CONCLUSIONS 

The time-dependent operation of single- and multistage fine bubble 
aeration columns with mass transfer kinetics was modeled and the 
dependence of the results on column parameters was exhibited. Ap- 
proach of aeration columns to steady-state operation is relatively 
sluggish, as is their response to concentration pulse overloads. The 
algorithm used permits the use of relatively large values of At, the time 
increment used in the differential equations modeling a column. This, in 
turn, permits the modeling of column operation to be readily carried out 
on commonly available microcomputers. A diskette for computers 
running MS-DOS which contains the programs for calculating the mass 
transfer time constant A, and for modeling column operation is available 
from the author at a charge of $3.00. 
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