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Abstract

The operation of fine bubble aeration columns in the time-dependent mode is
modeled. The kinetics of mass transfer between the solution and the rising
bubbles is included by means of a time-constant approach. The magnitude of At
is limited by the requirement that u,, - Az/Ax be less than 1 (u, is the linear
velocity of the aqueous phase); the magnitudes of the mass transfer time constant
and the rise velocity of the bubbles do not affect the maximum value of Ar which
can be used. The time constant for mass transfer is the reciprocal of the least
positive eigenvalue of a suitably chosen diffusion problem. The effects of influent
flow rate, number of compartments into which the column is partitioned, bubble
boundary layer thickness, and Henry's constant for the volatile solute are
examined. Transient effects associated with startup and with concentration pulses
in the influent are studied.

INTRODUCTION

Removal of volatile materials from water by fine bubble aeration has
been treated in a number of standard references (I-3, for example); these
steady-state models are very useful for the engineer designing an aeration
facility for the treatment of influent streams having relatively constant
flow rates and compositions. In the treatment of wastewaters, however,
one is typically confronted with influent streams which are highly
variable in both flow rate and composition. One then has the choice of 1)
overdesigning the aeration column to handle the largest transient load on
the assumption that this is a steady-state loading, 2) installing an
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equalization tank to smooth out the loading to a set of values which make
use of a steady-state model a reasonable approximation, or 3) utilizing a
time-dependent model, together with information about the time de-
pendences of the influent flow rate and concentration. This last method
permits one to make use of the ability of the aeration column itself to
buffer transient overloadings, and should permit some economies in the
design of the facility.

Here we present a model of fine bubble aeration which allows one to
examine the effect of time-dependent loading and which is suitable for
use on commonly available microcomputers, such as the IBM PC and its
compatibles. We first develop an equilibrium model for one-stage
aeration, by way of introduction. This is then modified to take account of
mass transport kinetics by means of a time constant approach. This, in
turn, is then elaborated into a multistage model suitable for use with tall,
baffled columns. The magnitude of the time constant for mass transport
between the solution and the rising bubbles is then estimated. Lastly, we
examine the results of the theory, illustrating how these depend on the
values of the parameters used to describe the column and its operation.

EQUILIBRIUM MODEL, SINGLE-STAGE BUBBLE AERATION
The system being analyzed is pictured in Fig. 1. Let

m(¢t) = mass of solute at time ¢ in the solution being treated, g
V, = volume of solution being treated, mL
, = air flow rate, mL/s, at 1 atm and ambient temperature
¢, = solute concentration in the solution, g/mL
¢, = solute concentration in the vapor phase in equilibrium with the
solution, gm/mL
K, = Henry’s constant for the solute, defined by ¢, = K¢,

A convenient formula for estimating Henry’s constants is

_ 1.603 X 1073 - (MW) - P°(T)
T-c,

Ky (1)

where (MW) = solute molecular weight, g/mol
P°(T) = solute vapor pressure at temperature 7, °K, torr
¢, = solute solubility in water at temperature 7, g/100 mL

Solubilities and vapor pressures depend markedly on temperature. If
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FiG. 1. Single-stage fine bubble aeration column.

data at the desired temperature are not available, a plot of ¢(T) versus T
or of log, ¢{T) versus 1/T may be used to obtain ¢, at the desired
temperature. Vapor pressures are best estimated by a plot of log,, P°(T)
versus 1/7, which is nearly linear.
The solute concentration and mass in the one-stage aerator under
consideration are related by
Cy Vl =m (2)
The amount of solute lost during a time interval dt is given by
—dm = v, dt
= v, Kyc,dt 3)
Substitution from Eq. (2) then yields

dm _ Kyvu
am _ fyl, 4
- 7 dt (4)

from which
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m(t) = myexp (—Kyv t/V)) &)}
or
c(t) = cgexp (—Kyv,t/V)) (6)

For a continuous flow apparatus operating in steady-state conditions,
mass balance yields

VinaCint = VinaCem + V,C, (7)

where v;,;, = influent (and effluent) flow rate
¢an = influent solute concentration
cen = effluent solute concentration

Equation (7) and Henry's law yield an expression for the effluent
concentration,

Cinfi
= 8
Com = 17 v, Ku/Vim (8)

If a continuous-flow aerator is not operating in steady state, mass
balance yields

dcen

OB

= —(Vipn T VaKu)Cemn + VinaCinn 9

The flow rates of air (v,) and water and the influent solute concentration
may vary with time. V|(#), the volume of liquid in the aerator, is given
by

V(1) = V(0) + f (0~ vem)dt (10)

where vy = effluent flow rate.

If vq = v = constant and v, and ¢,,; are also held constant, the
solution to Eq. (9) is given by

UinaCinn Ving + Ky VinaCinn
Com(t) = [c m(0) — —emt— ] exp [— t| + —nt
¢ ¢ Uinn ¥+ 0, Ky v, Ving + 0Ky

(11)
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We see that the time constant governing the approach of the aerator to a
steady state is given by

Vi
Uinn + vaKH

(12)

tSS

EFFECT OF MASS TRANSPORT KINETICS ON THE OPERATION
OF A SINGLE-STATE FINE BUBBLE AERATOR

Here we shall assume a first-order approach to equilibrium by a
bubble rising through the aerator. The mass of solute u(f) in a single
bubble of radius a which is rising through the aerator is assumed to be
determined by

du _ 4o (e = ca/Ky)
= ke dna? St (13)

where b — a = boundary layer thickness, cm
¢, = solute concentration in the bulk liquid, g/mL
k = mass transfer rate coefficient, cm?/s, to be calculated later
¢, = solute vapor concentration in the bubble

Noting that
w =2 nae, 0 (14)

allows one to rewrite Eq. (13) as

de, 3k - 3ke,
dt + a(b — a)Ky Ca a(b ~ a) (1s)
The solution to this equation yields
_ _ —3kt
c, () = clKH[l exp (Ma(b — a)KH)] (16)

or

u(@) = 4T;a3 CIKH[l T eXp (Z@%;T@)]
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If n bubbles per second are passing through the apparatus, then the
mass of solute removed by aeration during a time interval dr is given
by

4na’

-dm=n- KHcl[l — exp (Hb—_%kg)—K—)]dt (17)
4 H

where T’ = transit time of a bubble through the liquid in the aerator.

Now,

3
n-4"3“ =0, (18)

the air flow rate, and ¢, = m/V,;, which yields

K -3k’
dm = — Yeu [1 - <_____)] 19
m 7 exp al - )k, mdt (19)

This yields the same results as we obtained for the local equilibrium
model if we replace Ky by

Ky = KH[I — exp (;(—b——ilz—t),};)] (20)

We next estimate the bubble transit time t’. The rise velocity of a bubble
with respect to the surrounding fluid can be calculated over a range of
Reynolds numbers from 0 to 10* from Eq. (21), modified from Fair,
Geyer, and Okun (4).

_ 2gpri [ 1 < pryu )”2 0.34pr,,u]‘1
u ———9n 1+ 2\ 2 + 121 (21)

where g = gravitational constant, 980 cm/s’
p = fluid density, g/cm’
r, = bubble radius, cm
n = viscosity, P

This equation is solved iteratively for the bubble rise velocity relative to
the surrounding liquid, u.

The bubble rise velocity with respect to the aeration column, u,, is then
obtained as follows. The volume of air in the column is given by
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Vair =L (22)

where L is the height of the water column (¢m). The volume of water in
the column is

V,=nr)L —v,L/u, (23)

where r, is the column radius (cm). The linear velocity downward of the
water in the column is

v
Uy, = -3 24
nrt — v, /u, (24)

where v, is the volumetric flow rate of the water. Now
U, =u-—u, (25)

gives the bubble velocity relative to the apparatus. Substituting this into
Eq. (24) yields

vW
nr = o,/(u = uy)

U, =

(26)

which can be rearranged to give a quadratic in «,,, the desired solution to

which is
2 1/2
u, = [(u - ”“2) - {(u - —”7) - 4“;} ]/2 27)
nr: nr: nr;

The rise velocity of the bubble relative to the apparatus is obtained by
substituting this result into Eq. (25). The contact time of a bubble with the
aqueous phase is then given by

v =L/u, (28)

This should be regarded as an upper bound, since the bubbles rising
from the bottom of the column generally induce eddies and turbulence in
the liquid which lead to rising currents in the column where the bubbles
are most numerous. Because of this uncertainty, one is probably justified
in approximating #, by u in Eq. (28).
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MULTISTAGE MODEL FOR AERATION COLUMNS

If the aeration column is long and axial dispersion is controlled by
baffling, use of a multistage model may be warranted. The model is
illustrated in Fig. 2. We shall carry out the calculation in two steps. First,
the increase in solute mass of a single bubble as it moves across the ith
compartment representing the column is calculated under the assump-
tion that the solute concentration in the bulk liquid can be regarded as
constant during this short time interval. Second, this result is used in
constructing the differential equations describing the changes in bulk
liquid solute concentrations in the compartments used to model the
column.

Let L = column length, cm

r. = column radius, cm

a = mean bubble radius, cm

¢inp = influent solute concentration, g/mL

¢ = solute concentration in the liquid phase in the ith compart-
ment, g/mL

¢! = solute concentration in the vapor phase at the top of the ith
compartment, gm/mL

N = number of compartments into which the column is partitioned

AL = L/N, the thickness of one compartment, cm

Ky, = Henry's constant, dimensionless

k = mass transfer rate coefficient, cm?/s

v, = volumetric air flow rate, mL/s

v,, = volumetric water flow rate, mL/s

u = bubble rise velocity relative to aqueous phase, cm/s

Let us focus on a single bubble rising through the ith compartment.
The mass of solute in the bubble is then determined by an equation
similar to Eq. (15),

I — o
dp _ gngp L= ¢i/K)

dt b-a (29)

This integrates to give

_ _ 4.41103] < —3kt ) ), 4na’
ue) = [ 10) = Kuct- T exp () 4 Kol 5 o)

The transit time of a bubble across the ith compartment is given by

t = AL/u, (31)
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Influent

<~
T

Air Effluent
FIG. 2. Multistage aeration column.

where u;,, the rise velocity of a bubble relative to the lab, is given by Egs.
(25) and (27). An approximation which is good at low water and air flow
rates is

U = u — —2 (32)

nr;

where u is calculated from Eq. (21).

The initial value of u as the bubble crosses from the (i — 1)th to the ith
compartment is defined as y,_;. The final value, as the bubble leaves the
ith compartment, is taken as ;.

,=[ A’ c:]ex <_—3£_)
My Mi—1 3 H%i Y a(b _ G)KH

4na’

T3

Kyucl, i=12,...,N 33)
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Ho=0 (34)

The increase in solute carried by the bubble resulting from its movement
across the ith compartment is then given by y, — y,_,; this is the amount of
solute in the ith compartment. The volume of liquid in the ith
compartment is given by

V= (nrl = v,/u)AL (35
where u, is calculated from Egs. (25) and (27). Then
ci=m/V, (36)

gives the concentration in the ith compartment. A solute material balance
on this compartment gives

dm;
dt' = vw(cﬁ'*l - C{) -

3vu,
4ng?

(M = pim) (37)

The first term on the right-hand side of Eq. (37) represents simple
advection of the liquid. The second term represents the removal of solute
from the ith compartment in the vapor phase.

We then replace m; in Eq. (37) by means of Eq. (36), obtaining

def _ v, .1 _ n_ 3u, _ .
dr —Vl‘ Cisv1 — Ci) dna’v, (Wi = micy), i=2,3...,N—-1
(38)
gﬁ = Vw — aly 3v,(Uy — Ma-1)
dr v, Cinnt ~ CN) _—4na-3V—, ~ (39)
dcll v ! ] 3v Uy
bl PSS’ X - — el 4
ar v, @ Gy (40)

The simulation of a run is done as follows. Initial concentrations are
selected—such as ¢;; = ¢,y or ¢} = 0. The y; are then calculated recursively
from Egs. (33) and (34). These are then used in Egs. (38)-(40) to calculate
the dcl/dt values. These are used to numerically integrate the differential
equations to obtain the values of the ¢/ at # = Ar. These values are in turn
used to calculate the new values (at t = Ar) of the 1, and the process is
repeated. A predictor-corrector method described by Ralston and Wilf (5)
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provides an accurate, easily coded, and fast method for integrating Eqs.
(38)~-(40) forward in time.

Relatively large values of the time increment Az can be used in this
model, since At is limited by neither the time constant associated with
mass transfer into a bubble nor with the transit time of a bubble across
one of the compartments representing the column. An upper bound of At
is given by the requirement that Az be less than AL/u,,, where u, is the
linear velocity of the water in the column. This is a much more generous
criterion than those which come from mass transfer rate or bubble transit
time.

Steady-state models are generally preferred over time-dependent
representations because the former require less computation. The present
model, however, runs to steady state in a couple of minutes or less under
fairly typical conditions when a Zenith 150 microcomputer running
compiled BASICA at 477 MHz is used.

ESTIMATION OF THE MASS TRANSPORT TIME CONSTANT

In this section we calculate an estimate of the time constant for
diffusion of volatile solute from the bulk liquid through the boundary
layer of liquid around the bubble into the bubble. Since gas-phase
diffusion constants are very much larger than liquid-phase diffusion
constants, we assume that complete mixing within the bubble itself is
instantaneous on our time scale. We follow Huang et al. (6).

The diffusion equation appropriate for a problem with spherical
symmetry is

%% %ai<r g£> a<r<b 41

where D = solute diffusion constant in water, cm?*/s
¢ = solute concentration in the solution at time ¢ and distance r
from the center of the bubble
a = bubble radius
b = radius of bubble plus its boundary layer

Equation (41) is readily solved by separation of variables; a general
solution is

e(r,t) = érﬂ + B, + % Z [Al sin \/—g— r + B, cos \/%— r]e"" (42)
A
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Mass balance considerations yield

dm,, = 2 _QE =
7 4na°D 3 r=a (43)

where m, is the mass of solute in the bubble. Now

3
m, = P8 K,e(a) (44)

from Henry's law, so

dm, _ 4na’ . dc

= 2T Ky S (a) 4)
Equations (43) and (45) then give

0 3D @

o (@) = 2 @) (46)

This provides one of the problem’s boundary conditions. The other, at
r = b, is simply

c(b,t) = ¢y 47)

where ¢, is the bulk solute concentration.
One then substitutes Eq. (42) into Eqgs. (46) and (47) to get a pair of
lincar homogeneous equations for 4, and B,; the existence of nonzero

values for these requires that the determinant of the coefficients of this
system vanish. The linear equations are

—sm‘/—b+-cos\/yb 0 (48)

and

lf 3D}\ . A
A4, 2sm —a— cos 2sm D
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B, zcos/a+£s1nf 3szcos/%a =0

(49)

Setting the determinant of this system to zero yields a remarkably simple
result for the eigenvalue equation,

/(b—a)+AK£Ha— 0 (50)

A
3 D

It is evident from Eq. (50) that the A; are proportional to D, as expected.
We take 1/A, as the time constant for mass transfer, where A, is the lowest
nonzero root of Eq. (50). The relationship between k, the mass transfer
rate coefficient, and A, is obtained by setting the time constant in Eq. (16)
equal to A,, which yields

kzﬁ(i:jf_)!&i}“ (51)

RESULTS OF THE MODEL

Aeration columns show a fairly sharply defined breakthrough on
overload. This is seen in Fig. 3, in which effluent concentrations are
plotted versus time. The sharpness of the break increases with increasing
number of compartments; in this figure runs are shown for columns
represented by 5 and 25 compartments. (We note that these compart-
ments are not equivalent to theoretical transfer units or theoretical plates;
that model assumes local equilibrium.) The influent flow rates range
from 0.25 to 4.0 mL/s. These effluent concentrations are all for steady-
state conditions.

When columns are not overloaded, the number of compartments has a
very marked effect on column performance, as shown in Fig. 4. Here
three sets of identical runs (with influent flow rates of 2.25, 2.0, and 1.75
mL/s) are shown for columns represented by 1, 2, 3, 4, 5, 10, 20, and 25
compartments. Obviously one is well-advised to reduce axial dispersion
as much as possible in aeration columns if one is seeking maximum
removal efficiencies.
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Il ] —t
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Water flowrate

Fi1G. 3. Effect of water flow rate on effluent solute concentration. Column height = 100 cm;

column radius = 5 cm; Henry’s constant = 0.2 (dimensionless); air flow rate = 10 mL/s;

bubble radius = 0.05 cm; bubble boundary layer thickness = 0.02 cm; influent concentra-

tion = 1 g/L; density of aqueous phase = 1 g/mL; viscosity of aqueous phase = 0.01 P; mass

transfer rate constant k = 0.0002 cm?/s; dr = 10 s; bubble rise velocity = 12.85 cm/s; number
of compartments in model (N) = 5 (upper curve), 25 (lower curve).

06r gm/L
o4t
Ceffl

02F
2.25mlL /sec
2.00
1.75

1 1 1 1 1
0 5 10 15 20 25

N

FiG. 4. Steady-state effluent concentrations versus number of compartments used in model.
Influent flow rate = 1.75, 2.0, 2.25 mL/s: number of compartments in model (¥) plotted on
abscissa; other parameters as in Fig. 3.
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The time-dependent responses of an aeration column having influent
flow rates of 2.5, 2.0, and 1.5 mL/s are shown in Figs. 5, 6, and 7,
respectively. The other model parameters are given in the caption to Fig.
5. In each case the lower curve gives the effluent concentration from a
column initially charged with water, while the upper curve gives the
effluent concentration from a column initially charged with influent. In
both cases and at all three flow rates the column has approached steady-
state operation in roughly 10%s, or 2.8 h. It is apparent that the approach
to steady-state conditions is rather sluggish.

Figure 8 shows the responses of an aeration column to time-dependent
influent concentrations. In the three runs plotted here the influent
concentration, initially 1 g/L, is increased to 5 g/L at 5000 s and held at
this value for 1000, 2000, or 3000 s before being reduced back to 1 g/L. The
slow response of the effluent concentration to these transient overloads
and the prolonged tailing are both consistent with the slow approaches to
steady-state conditions seen in Figs. 5-7. This model also readily handles
transient variations in the influent flow rate. The ability of the model to
deal with such time-dependent input makes it particularly suitable for
exploring the behavior of systems which will be used in applications
which may involve substantial transient variations, such as waste

1.0 gm/L

os8sr

o6l =2.5mlL/sec

Ceffl

oat

02+

| J 1 ]

0 2x10%sec 4 1 6 8 10

FiG. S. Approach of effluent concentration to steady state after column start-up. Influent

flow rate = 2.5 mL/s; N = 5; other parameters as in Fig. 3. The lower curve corresponds to a

column initially filled with clean water; the upper, to a column initially filled with
influent.
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1.0 gm/L
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02r

0 2xI0%sec 4 ; 6 8 10

FiG. 6. Approach of effluent concentration to steady state after column start-up. Influent
flow rate = 2.0 mL/s; other parameters as in Fig. 5.

1.0 gm/L
08
06
Ceffl
=1.5mL/

04k [.5mL/sec
0.2F

e ) _
0 2x10%sec 4 y 6 8 10

FIG. 7. Approach of effluent concentration to steady state after column start-up. Influent
flow rate = 1.5 mL/s; other parameters as in Fig. 5.
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0.5

gm/L

04t
03k
Ceffl

02 -

0.1t

) J
0 5xI0%sec 10 15

FiG. 8. Effect of influent concentration pulses on column effluent concentration. Influent

flow rate = 2.0 mL/s; N = §; initial influent concentration = 1 g/L; influent concentration

increases to 5 g/L at 5000 s and is held at this value for 1000 (bottom curve), 2000, and 3000
(top curve) s, after which it returns to 1 g/L. Other parameters as in Fig. 3.

treatment. The dependence of the mass transfer time constant A, on the
Henry’s constant of the solute is illustrated in Fig. 9. It is apparent that,
over the range of Ky, which one expects for the removal of volatile organic
solvents from water, the mass transfer time constant does not vary by
much.

The effect of boundary layer thickness, b — a, on A, shown in Fig. 10, is
quite large. A, decreases rapidly with increasing boundary layer thickness,
as one would expect. In these runs the bubble radius is held constant. If
the bubble radius is varied while the boundary layer thickness is held
constant, A, varies as illustrated in Fig. 11. The values of A, decrease quite
rapidly with increasing bubble radius, again as one would expect.

It is generally believed that the boundary layer thickness around a
sphere moving in a liquid is of the order of the radius of the sphere (7).
We therefore made a set of runs in which the bubble radius and the
boundary layer thickness were simultaneously varied, with the boundary
layer thickness being set equal to the bubble radius. The results are
displayed in Fig. 12, and show that A; decreases rapidly with increasing
bubble and boundary layer thickness, as expected. Actually, on dimen-
sional grounds one expects that for this set of runs A; should vary as the
reciprocal of the square of the bubble radius, as is indeed the case.
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FiG. 9. Dependence of mass transfer rate parameter A; on Henry's constant. Bubble
radius = 0.1; boundary layer thickness = 0.1 cm; solute diffusion constant = 0.001 cm?-s.
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4t
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i
) 1 1 - ! 3

0 025 050 cm 075 100 125

b-a
FIG. 10. Dependence of mass transfer rate parameter A; on boundary layer thickness at
constant bubble radius. Henry’s constant = 0.2 (dimensionless); other parameters as in
Fig. 9.
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0 0.05cm 0.10 Q.15 0.20
a

FiG. 11. Dependence of mass transfer rate parameter A; on bubble radius at constant
boundary layer thickness. Boundary layer thickness = 0.1 cm; Henry’s constant = 0.2; other
parameters as in Fig. 9.
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1 A 1 —
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a

FIG. 12. Dependence of mass transfer rate parameter A on bubble radius, with boundary
layer thickness equal to bubble radius. Henry's constant = 0.2; other parameters as in
Fig. 9.
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CONCLUSIONS

The time-dependent operation of single- and multistage fine bubble
aeration columns with mass transfer kinetics was modeled and the
dependence of the results on column parameters was exhibited. Ap-
proach of aeration columns to steady-state operation is relatively
sluggish, as is their response to concentration pulse overloads. The
algorithm used permits the use of relatively large values of Az, the time
increment used in the differential equations modeling a column. This, in
turn, permits the modeling of column operation to be readily carried out
on commonly available microcomputers. A diskette for computers
running MS-DOS which contains the programs for calculating the mass
transfer time constant A, and for modeling column operation is available
from the author at a charge of $3.00.
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